Alyshah Ladhu, Monash University
Dr Valentina-Mira Wheeler, University of Wollongong
Dr Glen Wheeler, University of Wollongong
Mean curvature flow is probably one of the ”celebrity” flows in the study of geometric flows since its introduction by Mullins in ’56. Geometrically the flow changes a surface by moving each point by the mean curvature at that point in the direction of its normal. From the perspective of partial differential equations it is a nonlinear parabolic differential equation. Notably the flow is the heat flow for immersions making it the go to flow for applications of minimisation problems, given its long time solution when it exists is a minimal surface. The course is designed to give an overview of the main properties of the flow and applications and focus on some particular famous proofs in different settings.
Lectures are an hour each.
Week 1.
Week 2.
Week 3.
Week 4.
The course will be 3 take home assignments, 4 online quizzes and one final exam. Each Assignment is worth
10% of the final mark for the subject and each quiz is worth 5% of the final mark for the subject. The final exam
has 50% weight.
(*Assessment components may be subject to change)
(Not an exhaustive list)
Take this quiz and look at some of the expected foundational skills in this topic
I am a geometric analyst specialising in elliptic and parabolic partial differential equations. I possess additional extensive training in differential geometry, calculus of variations, dynamical systems, general relativity and functional analysis. Several of my projects have direct applications to bush fire modelling and biological membrane modelling.
Born in Romania, I have completed my training in both Romania and Germany where I have acquired my interest in curvature flows and applications in the group of Klaus Ecker at Freie University Berlin.
Since 2012 I have joined the staff at Wollongong University, the place that I call now home. I am a proud activist of Equity and Equality in mathematical sciences and since 2018 a DECRA Fellow of the Australian Research Council, studying partition problems through curvature flows and their applications to fire line modelling.
I’m an 80s baby, and a lot of my biggest mathematical influences were born at the same time as me. I grew up in rural NSW and left school early to run a computer business. After university, then industry, then university again, I started a PhD on fourth-order geometric evolution equations with a non-local term. Since then I’ve branched out into many areas within geometric analysis, with most of what I’ve done under the umbrella of “the study of curvature”. There are many real-world applications of what I do, perhaps one of the most striking is on the shape of human red blood cells used in understanding hereditary blood diseases, such as sickle cell anaemia and spherocytosis.
But truly, what I love to do is better understand mathematics itself, and to teach that understanding to others. There is just so much left to do and learn.